Setting the Stage. What is needed to move the field forward?

Jeff Healey MD, MSc, FRCP, FHRS
PHRI chair of Cardiology Research,
Population Health Research Institute
Professor of Medicine,
McMaster University, Canada
Disclosures

- Research grants from:
 - Boston Scientific, Medtronic, St. Jude
 - Bayer, Boehringer-Ingelheim, Bristol-Meyers-Squibb

- Director of Canadian Stroke Prevention Intervention Network

- Career Award from the Heart and Stroke Foundation of Ontario
Why might AF screening be effective?

- Many new screening technologies
- DOACs have made AF treatment easier
- Aging population; AF-stroke is common
- Large amount of AF can be identified.
WHO attributes of a good screening program

- Important health problem
- Available treatment
- Facilities for diagnosis and treatment
- Asymptomatic phase of disease
- Test for condition; acceptable to public
- Natural history understood; agreement on policy
- Cost of case finding balanced with overall costs
- Test should be sensitive
- Screening should be a continuous process
Steps to a successful AF Screening Program

Identify Suitable Population

Identify Suitable Setting

Select best screening tool and system

Stratify risks

Initiate OAC

Maintain OAC

Evaluate outcomes

Engage:

Patients
Communities
Physicians
Governments/payers

Requirements:

Outcomes research
Implementation research
Economic evaluation
Ideal screening strategy: Depends where?

Population
- Older (55+, 65+, 75+)
 - Tradeoff AF incidence with life-years and technology use
- Additional risk factors
 - CHADS-VASc, HAVOC, others
 - Obesity, sleep apnea
- Biomarkers
 - NT-Pro-BNP
 - Echocardiographic parameters
 - Cost/complexity of markers vs. incremental yield?

Setting
- General population
- Family practice
 - Direct link to treatment?
- Pharmacies
- Vaccination clinics
- Community centres
 - Improved patient-engagement and durability of program?
- Others
Challenges for Specific Setting

PIAAF Pharmacy; Open Heart 2017

<table>
<thead>
<tr>
<th>Age Groups (years)</th>
<th>Total N (%)</th>
<th>‘Actionable’ AF N (%)</th>
<th>No AF N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-74</td>
<td>620 (54.8)</td>
<td>11 (1.8)</td>
<td>609 (98.2)</td>
</tr>
<tr>
<td>75-85</td>
<td>422 (37.3)</td>
<td>9 (2.1)</td>
<td>413 (97.9)</td>
</tr>
<tr>
<td>>85</td>
<td>89 (7.9)</td>
<td>7 (7.9)</td>
<td>82 (92.1)</td>
</tr>
</tbody>
</table>

Approximately 50% of patients had a BP > 140/90 at screening
Only 50% of screen-positive patients receiving OAC 3 months later
PIAAF-Pharmacy

- R. Sandhu, U of A; published Heart Open 2017
- Cost/QALY was $375 CAD; published CMAJ Open 2017
- Limitation was poor delivery of OAC (50%)
- Intervention study now ongoing: Pharmacist prescribing
Different Screening Tools
PIIAF-FP: Objectives/Achievements

• Observational study comparing 3 methods of AF screening in the family practice setting
 • R. Quinn, U of Calgary, N=2054
 • Presentation at HRS 2017
 • Single-lead ECG and Automatic BP machine had 72% and 48% fewer false positives (respectively) than manual palpation
 • Newly-identified AF only 0.6%, using a single test in a group of well-run primary care clinics
3 % new AF, total AF prevalence increase >30 %

- Attends screening clinic, n= 7 173
- Declaration of health
- Known AF, n=666 (9.3%)
- Intermittent ECG-recordings 2 weeks
- No AF
- Silent AF, n=218 (3 %)
- No OAC-treatment, n= 149 (2.1%)
- OAC treatment, n=517

Referral to Cardiologist for OAC

Svennberg et al, Circulation 2015
Cost-effectiveness of mass screening for untreated atrial fibrillation using intermittent ECG recording

Mattias Aronsson, Emma Svennberg, Mårten Rosenqvist, Johan Engdahl, Faris Al-Khalili, Leif Friberg, Viveka Frykman-Kull, and Lars-Åke Levin

1Department of Medical and Health Sciences, Centre for Medical Technology Assessment, Linköping University, SE-581 83 Linköping, Sweden; 2Karolinska Institutet, Department of Clinical Science, Cardiology Unit, Danderyd University Hospital, Stockholm, Sweden; 3Department of Medicine, Halland Hospital, Halmstad, Sweden; and 4Stockholm Heart Centre, Stockholm, Sweden

- 8 fewer strokes/1000 screened
- 12 QALYs / 1000 screened
- € 4313/QALY
Value of combined screening

Possible synergies:
- HTN
- Diabetes
- Influenza vaccine
- Polypill

- Improved efficiency, reduce costs
- Increase acceptability in primary care
Current Challenges for AF Screening

- Stroke prevention is assumed/modelled, not measured
 - Government agencies, high-impact journals demanding more…
- Screening strategy must be adapted for each country and setting
- Some difficulties translating AF detection into delivery of stroke prevention therapy
 - particularly in community settings
Rate of detection in ICM arm was 30.0% vs 3.0% in control arm
NAVIGATE-ESUS Trial Design

Prospective, randomized, double-blind, active-comparator, event-driven, superiority, phase III study

Patients with recent ischemic stroke and
1. visualized by brain CT or MRI that is not lacunar (subcortical infarct ≤1.5 cm)
2. absence of cervical carotid atherosclerotic artery stenosis > 50% or occlusion
3. no atrial fibrillation after ≥ 24 hours cardiac rhythm monitoring
4. no intra-cardiac thrombus on transthoracic echocardiography
5. no other specific etiology for cause of stroke (eg, arteritis, dissection, migraine/vasospasm, drug abuse)

Age ≥ 50 years

~460 sites in 31 countries

Target RRR 30%; superiority w/ 90% power α=0.05
Enrollment ~24 months; minimum treatment ~6 months; study duration ~36 months
Estimated mean treatment duration 6 - 24 months;

\[N \sim 7,000 \]

Rivaroxaban 15 mg od \(n \sim 3,500 \)
ASA 100 mg od \(n \sim 3,500 \)

Day 1
Randomization

Efficacy Cut-off Date
30±7 days
EOS

1 month post study drug observation period

Randomization 7 days to 6 month after acute ESUS

Two substudies:

- MRI substudy assessing covert strokes (1000 participants)
- Biomarker / genetics substudy to identify biomarkers linked with ESUS, recurrent stroke and treatment response

7000 patients at 460 sites in 31 countries; 450 primary events; expected event rate 3.8%/yr
ASSERT-II: Detailed Inclusion Criteria

- Age ≥ 65
- and
 - $\text{CHA}_2\text{DS}_2\text{-VASc} \geq 2$, OR
 - Obstructive sleep apnea, OR
 - BMI >30
- and
 - Left atrial volume $\geq 58\text{ml}$ or LA diameter $\geq 4.4\text{cm}$, OR
 - Serum NT-ProBNP $\geq 290\ \text{pg/mL}$
ASSERT-II: Incidence of SCAF

Rate per year (95% CI)

- SCAF ≥ 5mins: 34.4% (27.7% – 42.3%)
- SCAF ≥ 30mins: 21.8% (16.7% – 27.8%)
- SCAF ≥ 6hours: 7.1% (4.5% – 10.6%)
- SCAF ≥ 24hours: 2.7% (1.2% – 5.0%)
Is SCAF common in non-PM patients?

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample Size</th>
<th>Device</th>
<th>Inclusion</th>
<th>Rate of AF Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSERT-II</td>
<td>250</td>
<td>SJM Confirm</td>
<td>Age>65, AND CHADS-VASc≥2, or OSA, or BMI> 30; AND LA> 58mL, or NT-ProBNP > 290 pg/mL</td>
<td>≥ 5 min 34.4% at one year</td>
</tr>
<tr>
<td>GRAF</td>
<td>200</td>
<td>MDT REVEAL-XT</td>
<td>Age ≥ 18 CHADS-VASc≥4</td>
<td>Pending</td>
</tr>
<tr>
<td>REVEAL-AF</td>
<td>450</td>
<td>MDT REVEAL-XT</td>
<td>Age ≥ 18 CHADS≥3, or CKD/COPD/OSA/CAD</td>
<td>29.3% at 18 months</td>
</tr>
<tr>
<td>PREDATE-AF</td>
<td>245</td>
<td>REVEAL-LINQ</td>
<td>Age>18, AND CHADS-VASc≥2</td>
<td>≥ 6 min 22.4% at 451 days</td>
</tr>
<tr>
<td>DANISH LOOP</td>
<td>6000</td>
<td>REVEAL-LINQ (1500)</td>
<td>Age > 70 One of HTN, DM, HF or stroke</td>
<td>Pending</td>
</tr>
</tbody>
</table>
Conclusions

- Unrecognized AF appears very common
 - Particularly in the elderly and those with AF/stroke risk factors

- Population-based AF screening may prevent stroke
 - Depends on implementation, acceptance, economics
 - Different populations, tools and strategies being tested

- Empiric therapy of patients at risk of AF and stroke under evaluation